Transition density of diffusion on the Sierpinski gasket and extension of Flory's formula.

نویسندگان

  • Hattori
  • Nakajima
چکیده

Some problems related to the transition density u(t, x) of the diffusion on the Sierpinski gasket are considerd, based on recent rigorous results and detailed numerical calculations. The main contents are an extension of Flory’s formula for the end-to-end distance exponent of self-avoiding walks on the fractal spaces, and an evidence of the oscillatory behavior of u(t, x) on the Sierpinski gasket. 05.40.+j, 02.50.Ga Typeset using REVTEX

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Hölder extension of a function defined on a Sierpinski gasket

We construct a linear extension operator Π that extends a function u defined on a Sierpinski gasket S which satisfies the Hölder estimate |u(x)− u(y)| ≤ C0|x− y| for all x, y on S, to a larger domain Ω ⊆ R. The extension function Πu is defined everywhere in Ω, is Hölder continuous everywhere in Ω, corresponds with u at every point on S and satisfies the estimate |Πu|Ω,β ≤ C‖u‖S,β with a constan...

متن کامل

Lee-Yang zeros and the Ising model on the Sierpinski Gasket

We study the distribution of the complex temperature zeros for the partition function of the Ising model on a Sierpinski gasket using an exact recursive relation. Although the zeros arrange on a curve pinching the real axis at T = 0 in the thermodynamic limit, their density vanishes asymptotically along the curve approaching the origin. This phenomenon explains the coincidence of the low temper...

متن کامل

The Resolvent Kernel for Pcf Self-similar Fractals

For the Laplacian ∆ defined on a p.c.f. self-similar fractal, we give an explicit formula for the resolvent kernel of the Laplacian with Dirichlet boundary conditions, and also with Neumann boundary conditions. That is, we construct a symmetric function G(λ) which solves (λI − ∆)−1 f (x) = ∫ G(λ)(x, y) f (y) dμ(y). The method is similar to Kigami’s construction of the Green kernel in [Kig01, §3...

متن کامل

Dirac operators and geodesic metric on the harmonic Sierpinski gasket and other fractal sets

We construct Dirac operators and spectral triples for certain, not necessarily selfsimilar, fractal sets built on curves. Connes’ distance formula of noncommutative geometry provides a natural metric on the fractal. To motivate the construction, we address Kigami’s measurable Riemannian geometry, which is a metric realization of the Sierpinski gasket as a self-affine space with continuously dif...

متن کامل

Contracting Similarity Fixed Point of General Sierpinski Gasket

The article mainly studies the contracting similarity fixed point and the structure of the general Sierpinski gasket. Firstly, the paper analyzes the importance of contracting similarity fixed point in fractal geometry. Based on a series of definitions, the article studies the contracting similarity fixed point. Then, the paper researches on the structure of the general Sierpinski gasket, and d...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Physical review. E, Statistical physics, plasmas, fluids, and related interdisciplinary topics

دوره 52 1  شماره 

صفحات  -

تاریخ انتشار 1995